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Functional linear regression has been widely used to explore the relationship be-
tween a scalar response and functional predictors. In this article, we consider the
situation where multiple functional predictors are observed, but only a few of these
predictors are actually useful in predicting the response. Several recent literatures
investigate the variable selection in such model. For example, ? used a penalized
likelihood method that controls the sparsity of the model and the smoothness of
the corresponding coefficient functions without considering any outliers. Our ob-
jective is to develop an outlying-resistant variable selection procedure to identify
the important functional predictors and estimate the corresponding coefficient func-
tions simultaneously even in presence of a significant proportion of contanimated
observations.

We assume a functional linear regression, Yi = α+
∑p

j=1

∫
βj(t)Xi,j(t)dt+ εi. To es-

timate the parameter βββ(t) = (β1(t), ..., βp(t))
T , we propose to minimize the following

objective function,

n∑
i=1

φ
(
Yi − α−

p∑
j=1

∫
βj(t)Xi,j(t)dt

)
+

p∑
j=1

Pλ,τ (βj(t)),

where φ(r) = 1 − exp(−r2/c) is the exponential squared loss function (?) with
tuning parameter c. Note that when c → ∞, φ ≈ r2/c, which corresponds to the
traditional least square estimate. Due to its boundedness, φ can effectively limit the
influence of outliers, therefore, provides robust estimate of the coefficient functions.
Furthermore, we can show the

√
n-consistence of the proposed estimators. We fur-

ther incorporate a penalty function Pλ,τ (βj(t)) = λ(||βj(t)||22 + τ ||β′′j (t)||22)1/2 and
||βj(t)||22 =

∫
βj(t)

2dt, β′′j (t) = ∂2βj(t)/∂t
2, which controls the sparsity of the model

and smoothness of coefficients. To solve the above optimization problem, we first
approximate the coefficient functions βj(t) using the B-spline basis functions bj(t) =
(bj1(t), ..., bjq(t))

T , i.e., βj(t) ≈
∑q

r=1 γjrbjr(t), where γjr are the corresponding basis
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Contamination Ratio 0.00 0.10 0.20 0.30

SE
Proposed Method 1.80 1.99 2.35 2.78

Least Square 1.58 29.48 80.78 159.76

TPR
Proposed Method 0.99 0.98 0.97 0.97

Least Square 0.80 1.00 1.00 1.00

TNR
Proposed Method 0.78 0.80 0.82 0.85

Least Square 1.00 0.01 0.00 0.00

Table 1: Comparison of performance of the proposed method and the least squared
method at difference levels of contamination

coefficients. When the functional predictors, Xi,j(·), are observed without measure-
ment errors and at an equally spaced dense grid of points, {tj,1, . . . , tj,Nj

}, then∫
βj(t)Xi,j(t)dt can be approximated by the Riemann sum, i.e.

∫
βj(t)Xi,j(t)dt =

ZTijγj, where Zij = (Zij,1, . . . , Zij,q)
T , Zij,r = (tj,l − tj,l−1)

∑
lXi,j(tj,l)bj,r(tj,l) and

γj = (γj1, . . . , γjq)
T . Hence, the functional linear model can be approximated by a

typical linear regression model Yi ≈ α +
∑p

j=1 Z
T
ijγj + εi.

We conduct simulation to demonstrate the superior performance of the proposed
method. We simulate data sets of the form {Xi,1(t), ..., Xi,10(t), Yi}, i = 1, ..., 1000,
where each covariate Xi,j is observed on the set of 300 equidistant points in (0, 300).

In particular, the generating model is Yi = α +
∑10

j=1

∫ 300

0
βj(t)Xi,j(t)dt + εi, where

εi
i.i.d.∼ (1 − δ)N(0, 0.01) + δN(0.01, 0.1) and δ is the contamination ratio. β1(t),

β2(t), and β3(t) have Gamma-density like shape with effect sizes decreasing with
increasing j, and β4(t) and β5(t) have exponential like shape with β5(t) being more
linear. Only signals j = 1, ..., 5 are assumed to be relevant. We run 100 replications.

Table ?? presents the comparison of the proposed method and traditional least
square method in terms of (1) square errors (SE), SE =

∑10
j=1

∫ 300

0
(βj(t)− β̂j(t))2dt;

(2) true positive rate (TPR); (3) true negative rate (TNR). As the figure shows,
when there is no contamination, the proposed method outperforms the least square
method slightly. As the contamination becomes more serious, the proposed method
totally dominates least square method in all three categories. Therefore, we can see
the clear advantage of the proposed method.
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