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We show tightness for a class of regression M-estimators, where the objective func-
tion can be non-monotonic and non-continuous. A prominent example of an estima-
tor is the Huber skip estimator, where each observation contributes to the objective
function through a criterion function, which is quadratic in the central part and
horizontal otherwise. The tightness result addresses a difficulty which is often met
in asymptotic analysis of problems where the objective function is non-convex. A
very common solution is to assume that the parameter space is compact. While
such an assumption circumvents the problem, it is done through a condition on the
unknown parameter and it is therefore rarely satisfactory from an applied viewpoint.
Instead, our result only requires an assumption that can be justified by inspecting
the observed regressors and the objective function.

We consider the multiple linear regression

yi = µ+ α′xi + εi, i = 1, . . . , n, (1)

where the innovations εi are independent of Fi−1 = σ(x1, . . . , xi, ε1, . . . , εi−1). The
regressors xi have dimension m. They can be deterministic or stochastic, and station-
ary or stochastically trending. Often we will subsume the intercept in the regressors
and use the notation

β′zi = µ+ α′xi.

The M-estimator for the parameter β is the minimizer, β̂, of the objective function

Rn(β) =
1

n

n∑
i=1

ρ(yi − z′iβ), (2)

for some criterion function ρ. M-estimators were originally introduced for location
problems by Huber in 1964, but later extended to regression models. The class of
M-estimators considered includes the Huber-skip estimator, which has a non-convex
criterion function, as well as quantile regression estimators, in particular the least
absolute deviation, and least squares estimator, which all have a convex criterion.
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The asymptotic theory of the regression M-estimator is well understood for nice
criterion functions ρ. ? provide an asymptotic theory for regression M-estimators
and show existence and uniqueness for the case of a convex, differentiable criterion
function. ? give two results on tightness (and consistency) for more general criterion
functions. In both cases the criterion function ρ(u) is continuous, non-decreasing
in u > 0 and non-increasing for u < 0. Their Theorem 1 shows tightness when
(yi, z

′
i) are i.i.d. and Eρ(yi − z′iβ) has a unique minimum. Their Theorem 4 shows

tightness when zi is deterministic and satisfies a condition on the frequency of small
regressors.

In this paper we generalize the result of ?. We assume ρ is semi-continuous and
nonnegative with a minimum at zero and greater then ρ∗ > 0 for large values of the
argument. We also need an extra condition on the expected criterion function h(v),
which is assumed to take a value below ρ∗ somewhere in the central part of the
distribution of the error term. The only condition to the regressors is a condition
on the frequency of small regressors, which is weaker than the condition of ?, albeit
stronger than the conditions for the tightness of least square estimators. The latter
illustrates the price we pay by leaving the least squares criterion. The condition
is related to a condition for deterministic regressor used by ? for S-estimators.
Our condition is, however, formulated in a slightly different way, which seems to be
easier to check for particular regressors. Indeed, we check the condition for a few
situations. We give a number of examples with deterministic regressors to illustrate
the condition. We also show that the condition is satisfied for stationary regressors
and for random walk regressors.

It is worth noting that the innovations are neither required to have a zero expectation
nor a continuous density. Thus, the results apply both when the innovations follow a
non-contaminated reference distribution with density f0, say, and when the they are
contaminated so that they follow a mixture distribution with density (1− ε)f0 + εf1,
say. The proofs use martingale techniques, chaining arguments and the iterated
martingale inequality from ?.
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