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The original application of local likelihood as a truly semiparametric method in
density estimation was proposed in papers by Loader [1996] and Hjort and Jones
[1996]: “The estimators run the gamut from a fully parametric fit to almost fully
nonparametric with only a single smoothing parameter to be chosen”. They also
give an interpretation of the procedure as one that minimizes, at each value of the
argument, the locally weighted Kullback-Leibler divergence between the “true” and
the model density. The infusion of local adaptation to the global likelihood by
considering maximization of an expression of the form
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with K(x−t
h

) being some suitable kernel function centered at t and with bandwidth h,
and g(x, θ) is a nominal parametric density. In any version of these modifications,the
resulting local maximum likelihood estimator θ̂t,h could be substituted to obtain the

density estimator g(x, θ̂t,h). As opposed to the global parametric model where the

substitution of the global maximum likelihood estimator θ̂ automatically results in
a density g(x, θ̂), this is not the case with g(x, θ̂t,h) and one needs to normalize to

get a shape-preserving density by ĝh(x) = g(x, θ̂x,h)/
∫
g(t, θ̂t,h)dt.

1 From likelihoods to Bregman divergences

When the ideal parametric model does not confidently hold, other divergences
are used to replace the Kullback-Leibler divergence. These divergences have been
demonstrated to possess good robustness properties relative to maximum likelihood
methods. Specific applications for robust density estimation have been considered
in Windham [1995] and in Basu et. al. [1998], with Bregman divergence type
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measures, parameterised by one “robustness control” parameter λ ≥ 0, with λ = 0
corresponding to no efficiency loss. However none of the mentioned works deals with
local versions of the robust divergence measures which are our main object.

Since the class of Bregman divergences is very large (and not all of them have found
useful applications), we focus on a particular class of them. Starting with the Box-

Cox transformation Gλ(x) =

{
1
λ
(xλ − 1), λ > 0

log x
we define Uλ(x) = x(Gλ(x) − 1).

Note that Uλ(x)→λ→0 x log x− x which is the Uλ(.) function that is used to define
the von Neumann divergence. The only paper known to us where the case of large
h has been analysed is Eguchi and Copas [1998] but it is completely devoted to
the local likelihood method. In a nutshell, the results of Eguchi and Copas [1998]
show that with respect to the relative entropy risk minimization, there is a benefit of
using the local likelihood: little localization “always helps”. We demonstrate both
theoretically and numerically that such type of statement is also true with respect
to robustness: with respect to the Bregman distance based risk minimization, little
localization of the globally robust estimator“always helps”.

We believe that the localisation proposed here offers a new view towards robustness.
In the standard robustness approach (Huber and Ronchetti [2009]) the main focus
is on modifying non-robust estimators of parameters of certain model density when
it is believed that the data was not necessarily generated from the model density
because there was contamination. The inference part is essentially finalized once
the parameters have been estimated. In our approach we estimate the local features
of the density that has generated the data. Our estimated g(x, θ̂(x)) does not in
general belong to the class g(x, θ), θ ∈ Θ and is giving a better idea about the “true”
density that has generated the data. On the other hand, there are similarities, too:
the belief that the true density is “not too far away” from a model density g(x, θ0)
is common for both approaches.
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