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In this article, we introduce a class of robust linear regression estimators for variable
selection in presence of outliers. Consider a linear model yi = xTi βββ+ εi, i = 1, . . . , n
where (yi,xi) represents the ith observation and yi ∈ R,xi ∈ Rd. βββ = (β1, . . . , βd) ∈
Rd is an unknown regression coefficient vector. εi is an iid random error that is
independent from xi and follows a symmetric parametric distribution f(·) with mean
0 and constant variance σ2. f(·) is assumed to be a Gaussian probability density
function. Usually some of the elements in βββ are zeros. To select only important
variables and estimate their coefficients robustly, we propose the following penalized
likelihood estimator,

β̂ββt = arg max
β∈Rd

{ n∑
i=1

lnt(f(yi − xTi βββ))︸ ︷︷ ︸
robustified likelihood

−n
d∑
j=1

pλnj
(βj)︸ ︷︷ ︸

penalty

}
,

where lnt(·) is defined as: lnt(u) = ln(t) +
∑K

k=1
ln(k)(t)
k!

(u− t)k if u < t, and lnt(u) =
ln(u) if u ≥ t or t = 0. Here, t ≥ 0 is a tuning parameter and lnt(u) is essentially
a K-th order Taylor expansion of ln(u) for u < t. By introducing this tuning
parameter t, we robustify the log-likelihood function so that it becomes insensitive
to perturbation to the data (?). Note that when t → 0, lnt(u) → ln(u), therefore,
the proposed estimator includes the penalized least square estimator as a special
case with t = 0.

When solving the optimization program, we essentially solve a weighted likelihood
equation where observations that disagree with the assumed model receive low
weights. For example, when K = 1, the first order condition on the robustified
likelihood becomes 0 =

∑n
i=1[ ∂

∂βββ
ln(f(yi − xTi βββ))] min(1, f(yi − xTi βββ)/t). Therefore,

observations whose likelihoods are below t (which more likely turn out to be outliers)
receive only partial weights whereas other observations receive full weights.
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Table 1: Monte Carlo Simulation

n Method CSR
Under
Fitted

Over
Fitted

Miss
Fitted

Model Error
Median MAD

100 Proposed 0.995 0 0.005 0 0.053 0.027
LAD 0.989 0 0.011 0 0.097 0.050

200 Proposed 1.000 0 0.000 0 0.024 0.012
LAD 0.998 0 0.002 0 0.043 0.020

400 Proposed 1.000 0 0.000 0 0.012 0.006
LAD 1.000 0 0.000 0 0.021 0.011

In the linear regression setting, the proposed penalized estimator obtains remark-
able robustness when data is contaminated and still performs well when the model
is correctly specified. One can control the estimator’s robustness by adjusting t.
When t→ 0, the proposed estimator becomes the traditional penalized least square
estimator. When t is sufficiently large, the proposed estimator becomes the penal-
ized minimum L2 distance estimator. With a moderate t, the proposed estimator
can be considered as a mixture of penalized Kullback-Leibler distance estimation
and penalized L2 distance estimation, where the former is known for its desirable
asymptotic properties and the latter is known for its remarkable robustness.

We further show that the proposed estimator is consistent and enjoys oracle property.
We also establish the bound of L2 norm of the estimation error. Furthermore, the
proposed estimator achieves the highest asymptotic breakdown point of 1/2 and
is equipped with a bounded influence function. In addition, we have proposed a
method for adaptively selecting the tuning parameter t to guarantee the robustness
as well as the its asymptotic properties.

We conduct simulation studies to demonstrate the advantage of the proposed method

over the traditional method in Table ??. We generate xi
i.i.d.∼ 0.8N(0,Ω1)+0.2N(2,Ω2)

where Ω1 = Id,Ω2 = Σd×d with {Σ}ij = 0.5|i−j| and εi
i.i.d.∼ 0.8N(0, 1) + 0.2N(10, 62),

and obtain yi by the linear regression. We apply both the proposed estimator and
the least absolute deviations (LAD) estimator with adaptive lasso penalty on the
simulated data and compare their variable selection performance based on the pro-
portions of correctly selecting (i.e. CSR), under fitting, over fitting, and miss fitting
the true model. We also compare the estimation performance based on model error,
(β̂ββ−βββ)TE[xxT ](β̂ββ−βββ). As the table shows, the proposed method outperforms LAD
in different scenarios in terms of both selection accuracy and estimation error.
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