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In recent years, negative binomial (NB) regression has received increasing attention
as a tool for modeling count data in presence of overdispersion. A convenient way
to parametrize the negative binomial probability function is by the mean p and the
dispersion parameter a. We denote this distribution by NB(u, o)

The negative binomial regression model assumes that we observe a response y and
a vector of covariables x € R”, so that y|x has distribution NB( h(83x + ), o)),
where the link function h is known while 5y = (o1, ..., Bop) and g are unknown
parameters.

One way to estimate these parameters is by means of the maximum likelihood esti-
mator. However these estimators are very sensitive to the presence of outliers in the
sample. A robust estimator for this model was proposed by Aeberhard, Cantoni,
and Heritier [2014].

We are going to introduce a new estimator which is simultaneously highly robust and
fully efficient. Suppose tat we have a sample (y1,X1), ..., (Yn, X,,), then the estimator
we propose is defined by the following three steps.

First step. We first obtain a consistent initial estimate of 35 = Bo/[|5,l. This
estimator estimator is defined by

B* = argr%i*nT((yla 7yn))7 ( *Txl)a ) (ﬁ*Txn))a
where if z = (21, ...2,) and w = (wy, ..., w,), we call 7(z,w) the Kendall rank corre-
lation between z and w given by
T(z,w) =#{(i,j),1 < i <j <n:sign((z —wi)(z —wy)) = 0}

This estimator was proposed first by Han [1987] for another models. It may be
proved that this estimator is consistent for any strictly increasing link function h.
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Second step. In this step we obtain initial estimators of 7y = [|55]], do and
ap. For that purpose, let z; = B*Txi, 1 < ¢ < n. Then we fit the following
negative binomial regression model with just one covariable : the distribution of
yi|zi is NB(h(noZ; 4+ dg)). Observe that this model holds exactly if we replace z; by
z; = B3T%;. Then we obtain estimators 77 = ||y, 6 and &y using an M-estimator
similar to the ones proposed by Marazzi and Yohai [2004] to estimate(uo, ag) given
a sample of a NB(uo, ) distribution. Finally, we complete the initial estimating
by taking ZE:&B* as estimator of Sy

Third step. We transform the variables y; as follows. Put 6 = (u, ) and let p(., )
and F'(.,0) the probability and distribution functions of the NB(u, ) distribution
respectively. Let y with NB(u, «) distribution and v = F(y,0) — up(y, 0), where u
has uniform distribution in [0, 1] (U(0,1)) and is independent of y. Then v has U(0,1)
distribution. Call 6; = (8Tx; + 0,&) and let uy, ..., u, be i.i.d. U(0,1) variables
which are independent of the sample. Then v; = F(y;, 51) — uip(y,gi), 1<i<n,
are approximately i.i.d. U(0,1) variables. Then we can detect outliers comparing
the empirical distribution of r; = |v; — 0.5],1 < ¢ < n, with the distribution
Fo(u) = 2ul([0,1]) of [u—0.5|, where u has distribution U(0,1). Let r¢y <, ..., < 7(n)
be the ordered sample and for ¢ = 1,...,n let H; be the empirical distribution of
T(1)s - T(t). Put sp = min{s : min,>g5_c(Hn—s(r) — Ho(r)) > 0}, where € is a small
number, e.g., € = 0.05. Then, the observations such that |v; — 0.5] > 7(,— = ¢ are
going to be considered outliers and eliminated from the sample

Then, the final estimators are defined by

(5?57&\) = argminL (yhy% "'7yna/8aa76|xla oy Xp, IMAX V; S Cb) )
B,o,8 1<i<n

where L(yi, ..., Yn, B, @, d|t) denotes the conditional likelihood of y =(y1, Y2, .., Yn)
given t, when the parameters are (3, «,d. It can be proved that under the model
we have so/n — 0. We show that this implies that the final estimators are fully
efficient. Moreover, a Monte Carlo simulation study show that they are also highly
robust.
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